

Determination of the B_s Lifetime Using Hadronic Decays

Amanda Deisher University of California, Berkeley

XLIIIrd Rencontres de MORIOND Electroweak Session La Thuile, March 8, 2008

Motivation

Spectator model: b mesons and baryons have same lifetime

Pauli interference, weak annihilation, weak exchange predict lifetime

ordering

$$\tau(B_c) < \tau(\Lambda_b) < \tau(B_s) \cong \tau(B^0) < \tau(B^+)$$

Experimental status:		<u>τ(B+)</u> τ(B ⁰)	<u>τ(Bs)</u> τ(B ⁰)	$rac{ au(\Lambda_b)}{ au(B^0)}$
	Exp.	1.071±0.009	0.939±0.021	0.921±0.036

 $\tau(B_s)$

PDG (2007): 1.437 + 0.031 - 0.030 ps

 B_{s}

CDF II Hadronic (360 pb⁻¹): $1.60 \pm 0.10 \pm 0.02$ ps

Tevatron experiments in great position to provide feedback to theorists on $\tau(B_s)$! CDF II $J/\psi\phi$ (1.7 fb⁻¹ - Aug 2007): 1.52 ± 0.04 ± 0.02 ps Update hadronic measurement (today's subject)

Hadronic Trigger Strategy

Decay mode of interest: $B_s \rightarrow D_{s^-} (\phi \pi^-) \pi^+$

Separating heavy B mesons from prompt backgrounds

- ◆Take advantage of long lifetime
- +Trigger on displaced vertex (> 200 μm)

Strategy sculpts proper time distributions

Use Monte Carlo to derive "efficiency curve" parameters → fixed in final fit to data

$$\operatorname{eff}(ct) = \sum_{i=1}^{3} N_i \cdot (ct - \beta_i)^2 \cdot e^{\frac{-ct}{c\tau_i}} \quad \text{if} \quad ct > \beta_i$$

Partially Reconstructed Decays

Goal: Decrease statistical error (increase statistics)

- Include more luminosity (360 pb⁻¹ \rightarrow 1.3 fb⁻¹)
- 2. Use partially reconstructed decays

 $B_s \rightarrow D_{s^-} (\phi \pi^-) \pi^+$ sample includes partially reconstructed decays

- ◆ tracks not reconstructed or wrong mass assignment
- doubles the statistics!

Corrective "K" factor accounts for missing momentum Monte Carlo

and mass

$$ct = \frac{L_{xy} \cdot m_B^{rec}}{p_T} \cdot K$$

- Good agreement with world averages
- Good agreement between FR and PR regions

Procedure tested extensively in 3 control samples

$B_s \rightarrow D_{s^-} (\phi \pi^-) X$ Measurement

Procedure

- 1. Perform mass fit to set fractions of modes
- 2. Fix fractions in lifetime fit. Fit for $c\tau(B_s)$ only

Largest systematic = background composition

- → promptly produced D + track ?
- ♦ tracks from real b hadron?
- ◆ background fraction

$$\tau(B_s) = 1.518 \pm 0.041 \pm 0.025 \text{ ps}$$

Most precise measurement to date!

Good agreement with recent high precision CDF result

 $\tau(B_s) [D_{s^-}(\phi \pi^-)X] / \tau(B^0) [PDG] = 0.99 \pm 0.03$

Summary

Flavor Specific Measurements

- ◆ Room for experimental input to heavy meson decay predictions
- ◆Trigger on displaced vertices
 - \rightarrow large B_s sample
 - can account for ct curve sculpting
- ◆Increase statistics using partially reconstructed B_s decays
- Result: Improved experimental uncertainties!